Identifikasi Kualitas Visual Rempah Ekspor Indonesia Menggunakan Deep Learning Berbasis CNN
DOI:
https://doi.org/10.59841/intellektika.v2i5.3228Keywords:
CNN, Deep Learning, image processing, Spices, StreamlitAbstract
Indonesia is the world's leading producer of spices, but it still faces challenges in manual visual quality assessment, which is inconsistent. This study aims to develop a spice quality classification system using a Deep Learning approach based on Convolutional Neural Networks (CNN). Data was collected through digital images of five types of spices (cloves, cardamom, cinnamon, pepper, and nutmeg) classified into two categories: good and bad. The dataset was then processed and used to Train the CNN model using Tensorflow. The model architecture consists of several convolution, pooling, and dense layers, and is integrated into a web-based prototype application using Streamlit. Evaluation results show that the model achieves high Accuracy of 98.86% (Training), 98.45% (Validation), and 98.45% (Testing). The prototype application can provide automatic Predictions of spice quality through a simple and responsive interface. The results of this study indicate that CNN is effective in identifying the visual quality of spices and can serve as an objective, efficient technological solution that supports the enhancement of Indonesia's spice export competitiveness.
References
Almas, M. (2025). Analisis kerjasama Indonesia dan Uni Eropa dalam ekspor rempah-rempah tahun 2020-2023.
Anggrasari, H., Perdana, P., & Mulyo, J. H. (2021). Keunggulan komparatif dan kompetitif rempah-rempah Indonesia di pasar internasional. Jurnal Agrica, 14(1), 9–19. https://doi.org/10.31289/agrica.v14i1.4396
Auliaddina, S., & Arifin, T. (2024). Sistemasi: Jurnal sistem informasi penggunaan data augmentasi dan hyperparameter tuning dalam klasifikasi jenis batik menggunakan model CNN. Sistemasi, 13(1). http://sistemasi.ftik.unisi.ac.id
Brar, D. S., Singh, B., & Nanda, V. (2025). An XAI-enabled 2D-CNN model for non-destructive detection of natural adulterants in the wonder hot variety of red chilli powder. https://doi.org/10.1039/d500118h
Elvianti, W. (2022). Sosialisasi rempah sebagai komoditas ekspor rempah melalui media sosial. Jurnal Abdimas Adpi Sosial Dan Humaniora, 3(2), 329–338.
Harahap, T. (2025). Potensi budidaya tanaman rempah dalam mendukung ekspor pertanian. Timbul Harahap Abstrak.
Hastuti, A., Lestari, T. A., Magister, P., Pangan, T., Pascasarjana, S., & Djuanda, U. (2021). Pemanfaatan 8 jenis rempah di bidang kosmetik, bumbu masak, makanan hingga fragrance dan flavor. Jurnal Ilmiah Pangan Halal, 3(1).
Jahanbakhshi, A., Abbaspour-Gilandeh, Y., Heidarbeigi, K., & Momeny, M. (2021). A novel method based on machine vision system and deep learning to detect fraud in turmeric powder. Computers in Biology and Medicine, 136. https://doi.org/10.1016/j.compbiomed.2021.104728
Kanade, P., David, F., & Kanade, S. (2021). Convolutional neural networks (CNN) based eye-gaze tracking system using machine learning algorithm. European Journal of Electrical Engineering and Computer Science, 5(2), 36–40. https://doi.org/10.24018/ejece.2021.5.2.314
Mudzakir, I., & Arifin, T. (2022). Klasifikasi penggunaan masker dengan convolutional neural network menggunakan arsitektur MobileNetv2. EXPERT: Jurnal Manajemen Sistem Informasi Dan Teknologi, 12(1), 76. https://doi.org/10.36448/expert.v12i1.2466
Sholihah, A., Agustin, Y. A., Vacha, N. K., & Yusuf, M. A. (2021). Spices and garbage two keys to healthy life. Abdimas: Jurnal Pengabdian Masyarakat Universitas Merdeka Malang, 6(4), 565–574. https://doi.org/10.26905/abdimas.v6i4.5172
Sultana, R., Adams, R. D., Yan, Y., Yanik, P. M., & Tanaka, M. L. (2020). Trash and recycled material identification using convolutional neural networks (CNN). Conference Proceedings - IEEE SOUTHEASTCON, 2020-March. https://doi.org/10.1109/SoutheastCon44009.2020.9249739
Sutana, I. G., Ayu, I., Arini, D., Tinggi, S., Hindu, A., Mpu, N., Singaraja, K., & Badung, G. P. (2024). Rempah-rempah sebagai potensi wellness tourism di Indonesia.
Tahir, M. M., & Amaliah, N. (2023). Bumbu rempah penggugah cita rasa penerbit CV. Eureka Media Aksara.
Zahara, L., Bestianta, R., & Iskandar, L. (2022). Buletin-apbn-public-164.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Intellektika : Jurnal Ilmiah Mahasiswa

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.





