Identifikasi Kualitas Visual Rempah Ekspor Indonesia Menggunakan Deep Learning Berbasis CNN

Authors

  • Arifin Yusuf Permana Universitas Adhirajasa Reswara Sanjaya
  • Ifani Hariyanti Universitas Adhirajasa Reswara Sanjaya

DOI:

https://doi.org/10.59841/intellektika.v2i5.3228

Keywords:

CNN, Deep Learning, image processing, Spices, Streamlit

Abstract

Indonesia is the world's leading producer of spices, but it still faces challenges in manual visual quality assessment, which is inconsistent. This study aims to develop a spice quality classification system using a Deep Learning approach based on Convolutional Neural Networks (CNN). Data was collected through digital images of five types of spices (cloves, cardamom, cinnamon, pepper, and nutmeg) classified into two categories: good and bad. The dataset was then processed and used to Train the CNN model using Tensorflow. The model architecture consists of several convolution, pooling, and dense layers, and is integrated into a web-based prototype application using Streamlit. Evaluation results show that the model achieves high Accuracy of 98.86% (Training), 98.45% (Validation), and 98.45% (Testing). The prototype application can provide automatic Predictions of spice quality through a simple and responsive interface. The results of this study indicate that CNN is effective in identifying the visual quality of spices and can serve as an objective, efficient technological solution that supports the enhancement of Indonesia's spice export competitiveness.

References

Almas, M. (2025). Analisis kerjasama Indonesia dan Uni Eropa dalam ekspor rempah-rempah tahun 2020-2023.

Anggrasari, H., Perdana, P., & Mulyo, J. H. (2021). Keunggulan komparatif dan kompetitif rempah-rempah Indonesia di pasar internasional. Jurnal Agrica, 14(1), 9–19. https://doi.org/10.31289/agrica.v14i1.4396

Auliaddina, S., & Arifin, T. (2024). Sistemasi: Jurnal sistem informasi penggunaan data augmentasi dan hyperparameter tuning dalam klasifikasi jenis batik menggunakan model CNN. Sistemasi, 13(1). http://sistemasi.ftik.unisi.ac.id

Brar, D. S., Singh, B., & Nanda, V. (2025). An XAI-enabled 2D-CNN model for non-destructive detection of natural adulterants in the wonder hot variety of red chilli powder. https://doi.org/10.1039/d500118h

Elvianti, W. (2022). Sosialisasi rempah sebagai komoditas ekspor rempah melalui media sosial. Jurnal Abdimas Adpi Sosial Dan Humaniora, 3(2), 329–338.

Harahap, T. (2025). Potensi budidaya tanaman rempah dalam mendukung ekspor pertanian. Timbul Harahap Abstrak.

Hastuti, A., Lestari, T. A., Magister, P., Pangan, T., Pascasarjana, S., & Djuanda, U. (2021). Pemanfaatan 8 jenis rempah di bidang kosmetik, bumbu masak, makanan hingga fragrance dan flavor. Jurnal Ilmiah Pangan Halal, 3(1).

Jahanbakhshi, A., Abbaspour-Gilandeh, Y., Heidarbeigi, K., & Momeny, M. (2021). A novel method based on machine vision system and deep learning to detect fraud in turmeric powder. Computers in Biology and Medicine, 136. https://doi.org/10.1016/j.compbiomed.2021.104728

Kanade, P., David, F., & Kanade, S. (2021). Convolutional neural networks (CNN) based eye-gaze tracking system using machine learning algorithm. European Journal of Electrical Engineering and Computer Science, 5(2), 36–40. https://doi.org/10.24018/ejece.2021.5.2.314

Mudzakir, I., & Arifin, T. (2022). Klasifikasi penggunaan masker dengan convolutional neural network menggunakan arsitektur MobileNetv2. EXPERT: Jurnal Manajemen Sistem Informasi Dan Teknologi, 12(1), 76. https://doi.org/10.36448/expert.v12i1.2466

Sholihah, A., Agustin, Y. A., Vacha, N. K., & Yusuf, M. A. (2021). Spices and garbage two keys to healthy life. Abdimas: Jurnal Pengabdian Masyarakat Universitas Merdeka Malang, 6(4), 565–574. https://doi.org/10.26905/abdimas.v6i4.5172

Sultana, R., Adams, R. D., Yan, Y., Yanik, P. M., & Tanaka, M. L. (2020). Trash and recycled material identification using convolutional neural networks (CNN). Conference Proceedings - IEEE SOUTHEASTCON, 2020-March. https://doi.org/10.1109/SoutheastCon44009.2020.9249739

Sutana, I. G., Ayu, I., Arini, D., Tinggi, S., Hindu, A., Mpu, N., Singaraja, K., & Badung, G. P. (2024). Rempah-rempah sebagai potensi wellness tourism di Indonesia.

Tahir, M. M., & Amaliah, N. (2023). Bumbu rempah penggugah cita rasa penerbit CV. Eureka Media Aksara.

Zahara, L., Bestianta, R., & Iskandar, L. (2022). Buletin-apbn-public-164.

Downloads

Published

2025-08-30

How to Cite

Arifin Yusuf Permana, & Ifani Hariyanti. (2025). Identifikasi Kualitas Visual Rempah Ekspor Indonesia Menggunakan Deep Learning Berbasis CNN . Intellektika : Jurnal Ilmiah Mahasiswa, 3(5), 103–114. https://doi.org/10.59841/intellektika.v2i5.3228

Similar Articles

1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.