Facial Landmarks and Face Detection in Python With OpenCv

Authors

  • Supiyandi Supiyandi Universitas Islam Negeri Sumatera Utara
  • Icha Miranti Irzan Universitas Islam Negeri Sumatera Utara
  • Risma Hidayati Universitas Islam Negeri Sumatera Utara
  • Rosa Prahasti Universitas Islam Negeri Sumatera Utara
  • Natria Selina Universitas Islam Negeri Sumatera Utara

DOI:

https://doi.org/10.59841/ignite.v2i4.2011

Keywords:

Facial Landmarks, Computer Vision, OpenCV, Python, Face Detection

Abstract

Face detection and facial landmarks are an important technique in the field of computer vision with a wide range of potential applications, including expression recognition, security systems, and human-computer interaction. This study explores the implementation of facial landmarks detection using Python and OpenCV, focusing on the use of the Haar Cascade algorithm for face detection and the Local Binary Features (LBF) model for the identification of landmarks. The proposed method implements real-time detection via webcam, capable of recognizing 68 important points on the human face. The results show that the approach using OpenCV and LBF models has good accuracy in detecting and tracking facial features in different lighting conditions and viewing angles. This research contributes to the development of efficient and reliable facial detection methods, with wide application potential in the fields of computer vision, security, and behavioral analysis.

References

Al-Aidid, S., & Pamungkas, D. (2018). Sistem Pengenalan Wajah dengan Algoritma Haar Cascade dan Local Binary Pattern Histogram. Jurnal Rekayasa Elektrika, 62-67. doi:10.17529/jre.v14i1.9799

Farokhah , L. (2021). Perbandingan Metode Deteksi Wajah Menggunakan OpenCV Haar Cascade, OpenCV Single Shot Multibox Detector (SSD) dan DLib CNN. JURNAL RESTI (Rekayasa Sistem dan Teknologi Informasi)(3), 609-614. doi:10.29207/resti.v5i3.3125

Hidayat, A. N. (2021). Aplikasi Python untuk Face Detection dengan OpenCV menggunakan Algoritma Haar-Cascade. (Medium) Diambil kembali dari https://annisanoorhidayat.medium.com/aplikasi-python-untuk-face-detection-dan-face-recognition-dengan-opencv-456aa16f8b3

Maulana, I., Khairunisa, N., & Mufidah, R. (2023). DETEKSI BENTUK WAJAH MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK (CNN). JATI (Jurnal Mahasiswa Teknik Informatika), No. 7(6), 3348-3355. doi:10.36040/jati.v7i6.8171

Prakoso, A. P., Rasyid, A., Deannova, A., & Rahmawan, A. E. (2024). DETEKSI WAJAH MENGGUNAKAN CASCADE CLASSIFIER DENGAN OPENCV-PYTHON. Jurnal Pengabdian Kepada Masyarakat, 23-29. doi:10.61488/sikama.v2i1.35

Pranoto, H. (2018). Pengenalan Wajah: Tahapan Mempelajari Wajah. (BINUS UNIVERSITY) Diambil kembali dari https://socs.binus.ac.id/2018/12/10/pengenalan-wajah-tahapan-mempelajari-wajah/

Sejati, H. P., & Mardhiyyah, R. (2021). Deteksi Wajah Berbasis Facial Landmark Menggunakan OpenCV Dan Dlib. Jurnal Teknologi Informasi, Vol.5, 144-148. doi:10.36294/jurti.v5i2.2220

Susim, T., & Darujati, C. (2021). Pengolahan Citra untuk Pengenalan Wajah (Face Recognition) Menggunakan OpenCV. Jurnal Syntax Admiration, 534-545. doi:10.46799/jsa.v2i3.202

Wibowo, A. W., Karima, A., Wiktasari, Yobioktabera, A., & Fahriah, S. (2020). Pendeteksian dan Pengenalan Wajah Pada Foto Secara Real Time Dengan Haar Cascade dan Local Binary Pattern Histogram. JTET (Jurnal Teknik Elektro Terapan), Vol. 9, 6-11.

Yulina, S. (2021). Penerapan Haar Cascade Classifier dalam Mendeteksi Wajah dan Transformasi Citra Grayscale Menggunakan OpenCV. Jurnal Komputer Terapan, 100-109.

Downloads

Published

2024-12-05

How to Cite

Supiyandi Supiyandi, Icha Miranti Irzan, Risma Hidayati, Rosa Prahasti, & Natria Selina. (2024). Facial Landmarks and Face Detection in Python With OpenCv. Journal Islamic Global Network for Information Technology and Entrepreneurship, 2(4), 15–27. https://doi.org/10.59841/ignite.v2i4.2011