Kegiatan Pengabdian Masyarakat dengan Pemeriksaan Awal Parameter Sindrom Metabolik (Gula Darah Puasa, Trigliserida, Lingkar Perut, HDL dan Tekanan Darah) pada Kelompok Usia Produktif di SMA Kalam Kudus II
DOI:
https://doi.org/10.59841/jurai.v3i1.2220Keywords:
Education, healthy lifestyle, metabolic screening, metabolic syndrome, screeningAbstract
Metabolic syndrome is a cluster of conditions that increases the risk of cardiovascular diseases and type 2 diabetes mellitus. Early screening of metabolic parameters such as fasting blood glucose, triglycerides, waist circumference, HDL cholesterol, and blood pressure is essential for risk detection and prevention of complications. This community service activity was conducted at SMA Kalam Kudus II, involving education on metabolic syndrome and screening of metabolic parameters in the productive age group. The education aimed to raise awareness of healthy lifestyles and the importance of routine screening. Early detection enables preventive actions and lifestyle improvements, such as balanced diets, regular exercise, and stress management. The program's implications include long-term reductions in metabolic disease risks. Education and metabolic syndrome screening have proven effective in raising awareness of metabolic health.
References
Blinova, N. V, Zhernakova, Y. V, Чазова, И. Е., & Ощепкова, Е. В. (2016). The Patients of High Cardiovascular Risk of Healthy: Unrecognized Metabolic Syndrome. Systemic Hypertension, 13(4), 60–65. https://doi.org/10.26442/sg29164
Bonikowske, A. R., Barillas-Lara, M. I., Koepp, K. E., Medina‐Inojosa, J. R., Squires, R. W., López-Jiménez, F., & Olson, T. P. (2019). Fat Mass Index Better Identifies Metabolic Syndrome: Insights From Patients in Early Outpatient Cardiac Rehabilitation. Journal of Clinical Medicine, 8(12), 2147. https://doi.org/10.3390/jcm8122147
Deng, M.-G., Wang, K., Nie, J.-Q., Liu, F., Liang, Y., & Liu, J. (2024). Frailty, Mental Disorders, and Metabolic Syndrome: A Genetic Association and Mediation Mendelian Randomization Study. https://doi.org/10.1101/2024.01.16.24301316
Ehrampoush, E., Arasteh, P., Homayounfar, R., Cheraghpour, M., Alipour, M., Naghizadeh, M. M., Hadibarhaghtalab, M., Davoodi, S. H., Askari, A., & Razaz, J. M. (2017). New Anthropometric Indices or Old Ones: Which Is the Better Predictor of Body Fat? Diabetes & Metabolic Syndrome Clinical Research & Reviews, 11(4), 257–263. https://doi.org/10.1016/j.dsx.2016.08.027
Firmansyah, Y., & Halim Santoso, A. (2020). Hubungan obesitas sentral dan indeks massa tubuh berlebih dengan kejadian hipertensi.
Firmansyah, Y., & Santoso, A. H. (2020). Hubungan Obesitas Sentral Dan Indeks Massa Tubuh Berlebih Dengan Kejadian Hipertensi (Relationship Between Central Obesity And Excess Body Mass Index With The Incidence Of Hypertension). HEARTY, 8(1).
Gardino, S., Firmansyah, Y., & Naibaho, M. L. (2022). Analisis multivariat faktor risiko metabolik penyebab kejadian Stroke (studi kasus kontrol di Puskesmas Kecamatan Cempaka putih). Jurnal Medika Hutama, 3(03 April), 2704–2717.
Hsiao, F.-C., Wu, C. Z., Hsieh, C. H., He, C.-T., Hung, Y. J., & Pei, D. (2009). Chinese Metabolic Syndrome Risk Score. Southern Medical Journal, 102(2), 159–164. https://doi.org/10.1097/smj.0b013e3181836b19
Jiménez-Mora, M. A., Nieves-Barreto, L. D., Montaño-Rodríguez, A., Betancourt-Villamizar, E. C., & Mendivil, C. O. (2020). Association of Overweight, Obesity and Abdominal Obesity With Socioeconomic Status and Educational Level in Colombia. Diabetes Metabolic Syndrome and Obesity Targets and Therapy, Volume 13, 1887–1898. https://doi.org/10.2147/dmso.s244761
Joshi, A., & Zanwar, A. A. (2021). Effect of Olive Oil on Metabolic Syndrome. https://doi.org/10.1016/b978-0-12-819528-4.00038-9
Klop, B., Elte, J. W. F., & Cabezas, M. C. (2013). Dyslipidemia in obesity: mechanisms and potential targets. Nutrients, 5(4), 1218–1240. https://doi.org/10.3390/nu5041218
Lahiry, P., Pollex, R. L., & Hegele, R. A. (2008). Uncloaking the Genetic Determinants of Metabolic Syndrome. Lifestyle Genomics, 1(3), 118–125. https://doi.org/10.1159/000112459
Lee, J.-S. (2023). Identification of Risk Groups for and Factors Affecting Metabolic Syndrome in South Korean Single-Person Households Using Latent Class Analysis and Machine Learning Techniques: Secondary Analysis Study. Jmir Formative Research. https://doi.org/10.2196/42756
Ler, P., Ploner, A., Finkel, D., Reynolds, C. A., Zhan, Y., Jylhävä, J., Dahl Aslan, A. K., & Karlsson, I. K. (2023). Interplay of Body Mass Index and Metabolic Syndrome: Association With Physiological Age From Midlife to Late-Life. Geroscience, 46(2), 2605–2617. https://doi.org/10.1007/s11357-023-01032-9
Lim, J. Y., Lim, J. Y., Wee, B. S., Wee, B. S., Mohamad, M., Mohamad, M., Jalil, A. M. M., Jalil, A. M. M., Shahril, M. R., Shahril, M. R., Lua, P. L., & Lua, P. L. (2022). Fat-to-lean mass ratio as a new anthropometric indicator in predicting metabolic syndrome among Malay adolescents in Terengganu, Malaysia. Proceedings of Singapore Healthcare. https://doi.org/10.1177/20101058221106283
Macek, P., Biskup, M., Terek-Derszniak, M., Stachura, M., Krol, H., Gozdz, S., & Zak, M. (2020). Optimal Body Fat Percentage Cut-Off Values in Predicting the Obesity-Related Cardiovascular Risk Factors: A Cross-Sectional Cohort Study. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, Volume 13, 1587–1597. https://doi.org/10.2147/DMSO.S248444
Paredes, S., Fonseca, L., Ribeiro, L., Ramos, H., Oliveira, J. C., & Palma, I. (2019). Novel and Traditional Lipid Profiles in Metabolic Syndrome Reveal a High Atherogenicity. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-48120-5
Putri, N. L. H. E., Nathaniel, F., Wijaya, D. A., Tadjudin, N. S., & Firmansyah, Y. (2023). Profil Komorbid Obesitas, Hipertensi, Dan Diabetes Melitus Tipe Ii Pada Lansia Dengan Atau Tanpa Penyakit Katarak. Jurnal Mata Optik, 4(2), 1–5.
Ramírez-Vélez, R., Carrillo, H. A., Correa-Bautista, J. E., Schmidt-RioValle, J., González-Jiménez, E., Correa-Rodríguez, M., González-Ruíz, K., & García-Hermoso, A. (2018). Fat-to-Muscle Ratio: A New Anthropometric Indicator as a Screening Tool for Metabolic Syndrome in Young Colombian People. Nutrients, 10(8), 1027. https://doi.org/10.3390/nu10081027
Romano, A., Vescovo, E. Del, Rivetti, S., Triarico, S., Attinà, G., Maurizi, P., & Ruggiero, A. (2022). Biomarkers Predictive of Metabolic Syndrome and Cardiovascular Disease in Childhood Cancer Survivors. Journal of Personalized Medicine, 12(6), 880. https://doi.org/10.3390/jpm12060880
Santoso, A. H., Firmansyah, Y., Luwito, J., Edbert, B., Teguh, S. K. M. M., Herdiman, A., Martiana, C. S., & Alexandra, T. V. (2023). Pengabdian Masyarakat-Pengukuran Indeks Massa Tubuh Dan Lingkar Perut Dalam Upaya Pemetaaan Obesitas Sentral Pada Warga Masyarakat Di Desa Dalung, Serang, Banten. SEWAGATI: Jurnal Pengabdian Masyarakat Indonesia, 2(2), 1–8.
Sawhney, A., & Rothkopf, M. H. (2014). Metabolic Syndrome. https://doi.org/10.1201/b17616-7
Suapumee, N., Seeherunwong, A., Wanitkun, N., & Chansatitporn, N. (2023). Examining Determinants of Control of Metabolic Syndrome Among Older Adults With NCDs Receiving Service at NCDs Clinic Plus: Multilevel Analysis. https://doi.org/10.21203/rs.3.rs-3317640/v1
Volek, J. S., Fernández, M. L., Feinman, R. D., & Phinney, S. D. (2008). Dietary Carbohydrate Restriction Induces a Unique Metabolic State Positively Affecting Atherogenic Dyslipidemia, Fatty Acid Partitioning, and Metabolic Syndrome. Progress in Lipid Research, 47(5), 307–318. https://doi.org/10.1016/j.plipres.2008.02.003
Wang, H. H., Lee, D. K., Liu, M., Portincasa, P., & Wang, D. Q. –H. (2020). Novel Insights Into the Pathogenesis and Management of the Metabolic Syndrome. Pediatric Gastroenterology Hepatology & Nutrition. https://doi.org/10.5223/pghn.2020.23.3.189
Wang, X., Ruan, X., Fu, X., Zhu, Q., Bai, Y., Wu, H., Zhou, Y., Qiu, H., Sun, Q., Jiang, Q., Yang, L., & J, G. (2010). Prevalence of the Metabolic Syndrome in Pudong New Area of Shanghai Using Three Proposed Definitions Among Chinese Adults. BMC Public Health, 10(1). https://doi.org/10.1186/1471-2458-10-246
Zhang, J.-X., Li, W., Tao, X.-J., Chen, C., Wang, Q.-A., Liu, W.-L., Yang, C., Wang, K.-R., Qiu, J.-W., Zhao, Y., & Zhang, Y.-H. (2022). Fat-to-muscle ratio as a predictor for dyslipidaemia in transitional-age youth. Lipids in Health and Disease, 21(1), 88. https://doi.org/10.1186/s12944-022-01697-9
Пинхасов, Б. Б., Селятицкая, В. Г., Лутов, Ю. В., & Деев, Д. (2018). Metabolic Syndrome and Its Components as Criteria for Evaluating the Efficiency of Hypertension Disease Treatment. Bulletin of Siberian Medicine, 17(4), 122–130. https://doi.org/10.20538/1682-0363-2018-4-122-130
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 jurnal ABDIMAS Indonesia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.