Teknik Peningkatan Kelarutan Bahan Aktif Farmasi Ibuprofen

Authors

  • M. Ramadhan Saputro Universitas Bhakti Kencana

DOI:

https://doi.org/10.59841/an-najat.v2i1.953

Keywords:

ko-amorf, ko-kristal, nanopartikel

Abstract

Ibuprofen adalah obat golongan NSAID pertama kali, yang bersifat nonselektif dan memiliki mekanisme kerja obat dengan cara memblokir enzim siklooksigenase yang menghasilkan inflamator prostaglandin dibagian COX-1. Karakteristik ibuprofen sebagai bahan aktif farmasi termasuk kategori BCS kelas II (kelarutan rendah, permeabilitas tinggi). Kelarutan dan permeabilitas obat sangat penting dalam menentukan ketersediaan hayati dan kesetaraan hayati. Tujuan penulisan ini memberikan pandangan terkait teknik – teknik yang digunakan dalam peningkatan kelarutan obat, laju disolusi dan stabilitas khususnya ibuprofen. Artikel ini disusun dari sumber primer yang telah dipublikasi secara online melalui Science Direct dengan memasukkan kata kunci co-crystal ibuprofen, ibuprofen solid dispersion, co-amorphous Ibuprofen, ibuprofen nanoparticle. Dari review ini ditemukan terdapat teknik dalam peningkatan kelarutan obat, laju disolusi dan stabilitas yaitu ko-amorf, ko-kristal, dan nanopartikel. Keberhasilan dalam mengembangkan bahan aktif farmasi Ibuprofen dengan masalah kelarutan terhadap air rendah dari teknik yang digunakan, sehingga memperoleh hasil peningkatan laju disolusi pada bahan aktif farmasi Ibuprofen tersebut.

References

Afzal, O. et al. (2022) ‘Nanoparticles in Drug Delivery: From History to Therapeutic Applications’, Nanomaterials, 12(24), pp. 1–27. doi: 10.3390/nano12244494.

Albarahmieh, E. (2015) ‘An Investigation into the Relationship between Predicted Drug Miscibility and Product Stability for Hot Melt Extruded Systems: Ibuprofen Dispersions in Eudragit RS PO’, MOJ Bioequivalence & Bioavailability, 1(2), pp. 28–37. doi: 10.15406/mojbb.2015.01.00008.

Babu, N. J. and Nangia, A. (2011) ‘Solubility Advantage of Amorphous Drugs and Pharmaceutical Cocrystals Published as part of the Crystal Growth & Design 10th Anniversary Perspective’, pp. 2662–2679.

Baghel, S., Cathcart, H. and O’Reilly, N. J. (2016) ‘Polymeric Amorphous Solid Dispersions: A Review of Amorphization, Crystallization, Stabilization, Solid-State Characterization, and Aqueous Solubilization of Biopharmaceutical Classification System Class II Drugs’, Journal of Pharmaceutical Sciences, 105(9), pp. 2527–2544. doi: 10.1016/j.xphs.2015.10.008.

Bai, Y. et al. (2021) ‘Testing of fast dissolution of ibuprofen from its electrospun hydrophilic polymer nanocomposites’, Polymer Testing, 93(October 2020), p. 106872. doi: 10.1016/j.polymertesting.2020.106872.

Bhalani, D. V. et al. (2022) ‘Bioavailability Enhancement Techniques for Poorly Aqueous Soluble Drugs and Therapeutics’, Biomedicines, 10(9). doi: 10.3390/biomedicines10092055.

Blagden, N. et al. (2007) ‘Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates’, Advanced Drug Delivery Reviews, 59(7), pp. 617–630. doi: 10.1016/j.addr.2007.05.011.

Bommaka, M. K. et al. (2018) ‘Entacapone : Improving Aqueous Solubility , Diffusion Permeability and Cocrystal Stability with Theophylline Entacapone : Improving Aqueous Solubility , Diffusion Permeability and Cocrystal Stability with Theophylline’. doi: 10.1021/acs.cgd.8b00921.

Brough, C. and Williams, R. O. (2013) ‘Amorphous solid dispersions and nano-crystal technologies for poorly water-soluble drug delivery’, International Journal of Pharmaceutics, 453(1), pp. 157–166. doi: 10.1016/j.ijpharm.2013.05.061.

Chen, Z. et al. (2018) ‘Surface Enrichment and Depletion of the Active Ingredient in Spray Dried Amorphous Solid Dispersions’.

Deng, Y. et al. (2018) ‘Improving the skin penetration and antifebrile activity of ibuprofen by preparing nanoparticles using emulsion solvent evaporation method’, European Journal of Pharmaceutical Sciences, 114, pp. 293–302. doi: 10.1016/j.ejps.2017.12.024.

Dewi, F. A., Sopyan, I. and Rusdiana, T. (2021) ‘Pemilihan Jenis Koformer dan Metode Preparasi dalam Sistem Penghantaran Sediaan Ko-Amorf’, Jurnal Sains Farmasi & Klinis, 8(3), p. 242. doi: 10.25077/jsfk.8.3.242-257.2021.

Donnelly, C. et al. (2015) ‘Probing the Effects of Experimental Conditions on the Character of Drug-Polymer Phase Diagrams Constructed Using Flory-Huggins Theory’, pp. 167–179. doi: 10.1007/s11095-014-1453-9.

Farjadian, F. et al. (2019) ‘Mesoporous silica nanoparticles: Synthesis, pharmaceutical applications, biodistribution, and biosafety assessment’, Chemical Engineering Journal, 359, pp. 684–705. doi: 10.1016/j.cej.2018.11.156.

Ghosh, I. et al. (2011) ‘Comparison of HPMC based polymers performance as carriers for manufacture of solid dispersions using the melt extruder’, International Journal of Pharmaceutics, 419(1–2), pp. 12–19. doi: 10.1016/j.ijpharm.2011.05.073.

Guerain, M. et al. (2020) ‘Polymorphism and stability of ibuprofen / nicotinamide cocrystal : The e ff ect of the crystalline synthesis method’, 584(May). doi: 10.1016/j.ijpharm.2020.119454.

Guinet, Y., Paccou, L. and E, F. D. A. N. (2013) ‘Polymorphic Transformation of Anhydrous Caffeine upon Grinding and Hydrostatic Pressurizing Analyzed by Low-Frequency Raman Spectroscopy’, 102(2), pp. 162–170. doi: 10.1002/jps.

Ha, M. W. and Paek, S. M. (2021) ‘Recent advances in the synthesis of ibuprofen and naproxen’, Molecules, 26(16). doi: 10.3390/molecules26164792.

Hassouna, F. et al. (2019) ‘Multi-scale analysis of amorphous solid dispersions prepared by freeze drying of ibuprofen loaded acrylic polymer nanoparticles’, Journal of Drug Delivery Science and Technology, 53(July), p. 101182. doi: 10.1016/j.jddst.2019.101182.

Hussain, A. et al. (2018) ‘Solubility and dissolution rate enhancement of ibuprofen by co-milling with polymeric excipients’, European Journal of Pharmaceutical Sciences, 123(June), pp. 395–403. doi: 10.1016/j.ejps.2018.08.001.

Ikeda, N. et al. (2020) ‘Improvement of the Solubility and Evaluation of the Physical Properties of an Inclusion Complex Formed by a New Ferulic Acid Derivative and γ-Cyclodextrin’, ACS Omega, 5(21), pp. 12073–12080. doi: 10.1021/acsomega.0c00277.

Kislalioglu, M. S. et al. (1991) ‘Physical characterization and dissolution properties of ibuprofen: Eudragit coprecipitates’, Journal of Pharmaceutical Sciences, 80(8), pp. 799–804. doi: 10.1002/jps.2600800820.

Kulthe, V. V., Chaudhari, P. D. and Aboul-Enein, H. Y. (2014) ‘Freeze-dried Amorphous Dispersions for Solubility Enhancement of Thermosensitive API Having Low Molecular Lipophilicity’, Drug Research, 64(9), pp. 493–498. doi: 10.1055/s-0033-1363249.

Kumar, D. et al. (2018) ‘Comparison of wet milling and dry milling routes for ibuprofen pharmaceutical crystals and their impact on pharmaceutical and biopharmaceutical properties’, Powder Technology, 330, pp. 228–238. doi: 10.1016/j.powtec.2018.02.022.

LaFountaine, J. S., McGinity, J. W. and Williams, R. O. (2016) ‘Challenges and Strategies in Thermal Processing of Amorphous Solid Dispersions: A Review’, AAPS PharmSciTech, 17(1), pp. 43–55. doi: 10.1208/s12249-015-0393-y.

Li, Y. et al. (2013) ‘Interactions between drugs and polymers influencing hot’, pp. 148–166. doi: 10.1111/jphp.12183.

Lin, X. et al. (2018) ‘Understanding the mechanism of dissolution enhancement for poorly water-soluble drugs by solid dispersions containing Eudragit® E PO’, Journal of Drug Delivery Science and Technology, 48, pp. 328–337. doi: 10.1016/j.jddst.2018.10.008.

Luis, F., Soares, F. and Carneiro, R. L. (2013) ‘Green Synthesis of Ibuprofen-Nicotinamide Co-crystals and In-line evaluation by Raman Spectroscopy’. doi: 10.1021/cg3017112.

Mali, S. N. and Karande, K. M. (2021) ‘a Review on : Biopharmaceutics Classification System’, Ijcrt, 9(5), pp. 738–743.

Mužík, J. et al. (2020) ‘Drug amorphisation by fluid bed hot-melt impregnation of mesoporous silica carriers’, Chemical Engineering Journal, 392(August). doi: 10.1016/j.cej.2019.123754.

Nagy, Z. K. et al. (2015) ‘High speed electrospinning for scaled-up production of amorphous solid dispersion of itraconazole’, International Journal of Pharmaceutics, 480(1–2), pp. 137–142. doi: 10.1016/j.ijpharm.2015.01.025.

Ojarinta, R. et al. (2018) ‘Preparation and characterization of multi-component tablets containing co-amorphous salts: Combining multimodal non-linear optical imaging with established analytical methods’, European Journal of Pharmaceutics and Biopharmaceutics, 132, pp. 112–126. doi: 10.1016/j.ejpb.2018.09.013.

Patrono, C. (2016) ‘Cardiovascular effects of cyclooxygenase-2 inhibitors: a mechanistic and clinical perspective’, British Journal of Clinical Pharmacology, pp. 957–964. doi: 10.1111/bcp.13048.

Psimadas, D. et al. (2012) ‘Molecular Nanomedicine Towards Cancer ’:, Journal of pharmaceutical sciences, 101(7), pp. 2271–2280. doi: 10.1002/jps.

Riikonen, J., Xu, W. and Lehto, V. P. (2018) ‘Mesoporous systems for poorly soluble drugs – recent trends’, International Journal of Pharmaceutics, 536(1), pp. 178–186. doi: 10.1016/j.ijpharm.2017.11.054.

Ruphuy, G. et al. (2020) ‘Encapsulation of poorly soluble drugs in yeast glucan particles by spray drying improves dispersion and dissolution properties’, International Journal of Pharmaceutics, 576, p. 118990. doi: 10.1016/j.ijpharm.2019.118990.

Shohin, I. E. et al. (2011) ‘Interchangeability evaluation of multisource ibuprofen drug products using biowaiver procedure’, Indian Journal of Pharmaceutical Sciences, 73(4), pp. 443–446. doi: 10.4103/0250-474X.95643.

Singh, A. and Van den Mooter, G. (2016) ‘Spray drying formulation of amorphous solid dispersions’, Advanced Drug Delivery Reviews, 100, pp. 27–50. doi: 10.1016/j.addr.2015.12.010.

Solomon, S. et al. (2019) ‘Particle Engineering of Excipients : A Mechanistic Investigation into the Compaction Properties of Lignin and [ Co ] -Spray Dried Lignin’, International Journal of Pharmaceutics. doi: 10.1016/j.ijpharm.2019.03.061.

Šoltys, M. et al. (2016) ‘Radiofrequency controlled release from mesoporous silica nano-carriers’, Microporous and Mesoporous Materials, 229, pp. 14–21. doi: 10.1016/j.micromeso.2016.04.009.

Sood, J. et al. (2014) ‘Therapeutic Delivery’, 5, pp. 1123–1142.

Sun, D. D. and Lee, P. I. (2013) ‘Evolution of supersaturation of amorphous pharmaceuticals: The effect of rate of supersaturation generation’, Molecular Pharmaceutics, 10(11), pp. 4330–4346. doi: 10.1021/mp400439q.

Takeda, K. et al. (2019) ‘Physical Stability of an Amorphous Sugar Matrix Dried From Methanol as an Amorphous Solid Dispersion Carrier and the Influence of Heat Treatment’, Journal of Pharmaceutical Sciences, 108(6), pp. 2056–2062. doi: 10.1016/j.xphs.2019.01.008.

Tan, S. and Wang, G. (2017) ‘Redox-responsive and pH-sensitive nanoparticles enhanced stability and anticancer ability of erlotinib to treat lung cancer in vivo’, Drug Design, Development and Therapy, 11, pp. 3519–3529. doi: 10.2147/DDDT.S151422.

Tang, F., Li, L. and Chen, D. (2012) ‘Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery’, Advanced Materials, 24(12), pp. 1504–1534. doi: 10.1002/adma.201104763.

Todaro, V. and Healy, A. M. (2021) ‘Development and characterization of ibuprofen co-crystals granules prepared via fluidized bed granulation in a one-step process – a design of experiment approach’, Drug Development and Industrial Pharmacy, 47(2), pp. 292–301. doi: 10.1080/03639045.2021.1879836.

Varrassi, G. et al. (2020) ‘Ibuprofen Safety at the Golden Anniversary: Are all NSAIDs the Same? A Narrative Review’, Advances in Therapy, 37(1), pp. 61–82. doi: 10.1007/s12325-019-01144-9.

Wegiel, L. A. et al. (2013) ‘Crystallization of Amorphous Solid Dispersions of Resveratrol during Preparation and Storage — Impact of Different Polymers’, 102(1), pp. 171–184. doi: 10.1002/jps.

Zhang, G. G. Z. et al. (2004) ‘Phase transformation considerations during process development and manufacture of solid oral dosage forms’, 56, pp. 371–390. doi: 10.1016/j.addr.2003.10.009.

Zhang, P., Forsgren, J. and Strømme, M. (2014) ‘Stabilisation of amorphous ibuprofen in Upsalite, a mesoporous magnesium carbonate, as an approach to increasing the aqueous solubility of poorly soluble drugs’, International Journal of Pharmaceutics, 472(1–2), pp. 185–191. doi: 10.1016/j.ijpharm.2014.06.025.

Ziaee, A. et al. (2017) ‘Spray drying ternary amorphous solid dispersions of ibuprofen – An investigation into critical formulation and processing parameters’, European Journal of Pharmaceutics and Biopharmaceutics, 120, pp. 43–51. doi: 10.1016/j.ejpb.2017.08.005.

Ziaee, A. et al. (2019) ‘Amorphous Solid Dispersion of Ibuprofen: A Comparative Study on the Effect of Solution Based Techniques’, International Journal of Pharmaceutics, p. 118816. doi: 10.1016/j.ijpharm.2019.118816.

Downloads

Published

2024-02-29

How to Cite

Saputro, M. R. (2024). Teknik Peningkatan Kelarutan Bahan Aktif Farmasi Ibuprofen. An-Najat, 2(1), 86–98. https://doi.org/10.59841/an-najat.v2i1.953