Mengklasifikasi Mata Uang Lima Ribu Rupiah dan Dua Ribu Rupiah dengan Menggunakan Algoritma CNN
DOI:
https://doi.org/10.59841/saber.v2i3.1407Keywords:
Convolutional Neural Network, Currency Image Classification, Image Processing, Model AccuracyAbstract
Currency classification is one of the challenges in the field of digital image processing and computer vision which can be applied in various applications, such as ATM machines, automatic money exchange machines, and mobile banking applications. This research aims to develop a classification model that is able to differentiate between 5000 thousand rupiah and 2000 thousand rupiah currency using the Convolutional Neural Network (CNN) algorithm. CNN was chosen because of its ability to recognize complex visual patterns and specific features from images. The dataset used in this research consists of 10 currency images of 5000 thousand rupiah and 10 images of 2000 thousand rupiah taken in lighting conditions and viewing angles vary and are classified into 2 classes. The data is then processed and normalized to increase model accuracy. The proposed CNN model, namely the Squential Model, consists of several convolution layers, pooling layers, and fully connected layers which are optimized to detect visual differences between the two types of currency.
References
Birowo, “Pengolahan Citra Untuk Pengenalan Nilai Nominal
Pada Mata Uang Kertas Dengan Metode EigenFace,” Jurnal
Inovasi dan Sains Teknik Elektro, vol. 1, no. 1, pp. 20–27, 2020.
F. F. Maulana dan N. Rochmawati, “Klasifikasi Citra Buah Menggunakan Convolutional Neural Network,” JINACS, pp. 104-108, 2019.
M. R., Latumakulita, L., & Nainggolan N. Kumaseh, "Segmentasi citra digital ikan,"
Jurnal Ilmiah, vol. 13, pp. 74-79, 2013.
A. Y. Wijaya dan R. Soelaiman I. S. E. Putra, "Klasifikasi Citra Menggunakan Convolutional Neural Network (CNN) Pada Caltech 101," Jurnal Teknik ITS, vol. 5, no. 1, pp. A65-A69, 2016.
S. R. Putra, "Implementasi Convolutional Neural Network Untuk Klasifikasi Obyek Pada Citra," Institut Sepuluh November, 2015.
I. F. Alam, M. I. Sarita, and A. M. Sajiah, “Implementasi Deep Learning dengan Metode Convolutional Neural Network untuk Identifikasi Objek secara Real Time Berbasis Android,” semanTIK, vol. 2, no. 5, pp. 237–244, 2020.
I. W. S. E. P, A. Y. Wijaya, and R. Soelaiman, “Klasifikasi Citra Menggunakan Convolutional Neural Network (CNN) pada Caltech 101,” Jurnal Teknik ITS, vol. 5, no. 1, 2016.
Firmansyah, Ichsan., B. Herawan Hayadi. (2022). Komparasi Fungsi Aktivasi Relu Dan Tanh Pada Multilayer Perceptron. JIKO (Jurnal Inform. dan Komputer) vol. 6.
Albelwi, S., & Mahmood, A. (2017). A framework for designing the architectures of deep convolutional neural networks. Entropy, Vol. 19, No. 6, 1-20.
Belinkov, Yonatan., & Yonatan Bisk. (2017) Synthetic and Natural Noise Both Break Neural Machine Translation., Computer Science., vol 1., arXiv:1902.06673.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 SABER : Jurnal Teknik Informatika, Sains dan Ilmu Komunikasi
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.