Analisis Sentimen Pada Pembatalan Tuan Rumah Indonesia Di Piala Dunia U-20 Menggunakan Fasttext Embeddings Dan Algoritma Recurrent Neural Network

Authors

  • Aan Evian Nanda Universitas Pembangunan Nasional Veteran Jawa Timur
  • Andreas Nugroho Sihananto Universitas Pembangunan Nasional Veteran Jawa Timur
  • Agung Mustika Rizki Universitas Pembangunan Nasional Veteran Jawa Timur

DOI:

https://doi.org/10.59841/saber.v2i2.1000

Keywords:

Sentiment, Twitter, U-20 World Cup, FastText, LSTM, RNN

Abstract

Indonesia's golden opportunity to take part in a world-class soccer competition at the U-20 World Cup competition was wiped out, as FIFA gave the decision to revoke Indonesia's status as host of the U-20 World Cup. Indonesian netizens who felt disappointed expressed their opinions and trended on social media Twitter. This research focuses on sentiment analysis of tweets using a combination of FastText embeddings method for word vectorization and using LSTM type RNN algorithm for sentiment classification. The dataset used totals 9,645 data consisting of 4,141 positive data and 5,504 negative data taken from March 29, 2023 to April 05, 2023. The test results on the LSTM model provide the best performance with an accuracy value of 74.92%, precision 74.74%, recall 74.92%, and f1-score 74.78%. The conclusion of this research is that the majority of datasets have negative sentiments, which means that people are more likely to give negative opinions than to provide support to Indonesian football which is experiencing problems. It is hoped that with this conclusion in the future people will better control their opinions and provide positive opinions when Indonesia is experiencing problems.

References

Adinda Siti Shalehah. (2022). Analisa Kinerja RNN Menggunakan FastText Embedding terhadap Ulasan PeduliLindungi di Masa COVID-19 [Universitas Mercu Buana]. https://repository.mercubuana.ac.id/70595/

Alfyando, M., Anggraeny, F. T., & Sihananto, A. N. (2024). Perbandingan Algoritma Random Forest dan Logistic Regression Untuk Analisis Sentimen Ulasan Aplikasi Tumbuh Kembang Anak Di Play Store. Jurnal Sistem Informasi dan Ilmu Komputer, 2(1), 77–86.

Arif Widiasan Subagio, Anggraini Puspita Sari, & Andreas Nugroho Sihananto. (2024). Klasifikasi Lexicon-Based Sentiment Analysis Tragedi Kanjuruhan pada Twitter Menggunakan Algoritma Convolutional Neural Network. Jurnal Ilmiah Sistem Informasi Dan Ilmu Komputer, 4(1), 166–177. https://doi.org/10.55606/juisik.v4i1.759

Arsi, P., & Waluyo, R. (2021). Analisis Sentimen Wacana Pemindahan Ibu Kota Indonesia Menggunakan Algoritma Support Vector Machine (SVM). Jurnal Teknologi Informasi Dan Ilmu Komputer, 8(1), 147.

Faturohman, F., Irawan, B., & Setianingsih, C. (2020). Analisis Sentimen Pada Bpjs Kesehatan Menggunakan Recurrent Neural Network. eProceedings of Engineering, 7(2).

Pradana, Y. R. Y., Astiningrum, M., & Hani’ah, M. (2020). Analisis Sentimen Tentang Opini Terhadap Performa Timnas Sepak Bola Indonesia Pada Twitter. Seminar Informatika Aplikatif Polinema, 35–39.

Purba, M. P., & Wijaya, Y. T. (2022). Analisis Basic Emotion Masyarakat Pada Masa Pandemi COVID-19 di Media Sosial Twitter Dengan Metode LSTM-FastText. Seminar Nasional Official Statistics, 2022(1), 643–654.

Rizki, A. M., Yuliastuti, G. E., Puspaningrum, E. Y., & Nurlaili, A. L. (2022). Klasifikasi Jenis Kelamin Berdasarkan Ciri Fisik Menggunakan Algoritma Neural Network. Scan: Jurnal Teknologi Informasi dan Komunikasi, 17(3), 18-22.

Vaclav Kosar. (2022, Juni 12). FastText Vector Norms And Out of Vocabulary (OOV) Words. vaclavkosar.com. https://vaclavkosar.com/ml/FastText-Vector-Norms-And-OOV-Words

Downloads

Published

2024-03-05

How to Cite

Aan Evian Nanda, Andreas Nugroho Sihananto, & Agung Mustika Rizki. (2024). Analisis Sentimen Pada Pembatalan Tuan Rumah Indonesia Di Piala Dunia U-20 Menggunakan Fasttext Embeddings Dan Algoritma Recurrent Neural Network. SABER : Jurnal Teknik Informatika, Sains Dan Ilmu Komunikasi, 2(2), 246–257. https://doi.org/10.59841/saber.v2i2.1000