Analisis Sentimen Terhadap Kualitas Layanan Driver Gojek Di Aplikasi Play Store Menggunakan Algoritma Naïve Bayes Dan Aplikasi Orange

Authors

  • Ipan Hasmadi Universitas Muhammadiyah Kalimantan Timur
  • Rudiman Rudiman Universitas Muhammadiyah Kalimantan Timur
  • Khoirul Huda Dwi Putra Universitas Muhammadiyah Kalimantan Timur
  • Muhammad Farhat jundullah Universitas Muhammadiyah Kalimantan Timur

DOI:

https://doi.org/10.59841/saber.v2i1.673

Keywords:

Driver, Gojek, Naïve bayes, Orange

Abstract

The significant changes in daily life patterns, driven by technological advancements, particularly in the transportation sector, are evident through the emergence of on-demand services such as Gojek. This research aims to explore users' perspectives and opinions regarding service quality, focusing on aspects like driver behavior, responsiveness, and reliability within the Gojek platform. The Naive Bayes method is employed to analyze user sentiments toward the driver services, supported by the Orange software to comprehend the complex patterns in user reviews. Evaluation is conducted on reviews from the Play Store, resulting in an accuracy of 87.4%, F1 score of 87.6%, precision of 87.9%, and recall of 87.4%. These findings indicate the success of the model in identifying and predicting predefined variables. Through the combination of methods and software, the study concludes that sentiment analysis of Gojek's driver services can be performed efficiently and reliably, providing valuable insights for online motorcycle taxi service providers.

References

Afrizal, S., Irmanda, H. N., Falih, N., & Isnainiyah, I. N. (2020). Implementasi Metode Naïve Bayes untuk Analisis Sentimen Warga Jakarta Terhadap. Inform. J. Ilmu Komput, vol. 15, no. 3, 157. doi:10.52958/iftk.v15i3.1454.

Anggraini, N. &. (2019). Comparison of Sentiment Analysis against Digital Payment “T-cash and Go-pay” in Social Media Using Orange Data Mining. Journal of Information Systems and Informatics, Vol. 1, No. 2, 152-163. doi:doi:10.33557/journalisi.v1i2.21

Handani, S. W., Saputra, D. I., Hasirun, Arino, R. M., & Ramadhan, G. F. (2019). Sentiment analysis for go-jek on google play store. Journal of Physics: Conference Series, Vol. 1196, No. 1, 012032. doi:10.1088/1742-6596/1196/1/012032

Hardati, R. N. (2021). Pengaruh Kinerja Driver dan Fasilitas Aplikasi Terhadap Loyalitas Melalui Kepuasan Pelanggan (Studi Kasus Gojek Kota Malang). PROFIT: JURNAL ADMINISTRASI BISNIS, Vol. 15, No. 1, 74 - 83. doi:10.21776/ub.profit.2021.015.01.8

Indarwati, K. D. (2023). Analisis Sentimen Terhadap Kualitas Pelayanan Aplikasi Gojek Menggunakan Metode Naive Bayes Classifier. JATISI (Jurnal Teknik Informatika dan Sistem Informasi), Vol 10 (No 1). doi:10.35957/jatisi.v10i1.2643

Mentaruk, I., Herdiani, A., & Puspandari, D. (2019). Analisis Sentimen Twitter Transportasi Online Berbasis Ontologi (Studi Kasus: Go-Jek). eProceedings of Engineering, Vol. 6, No. 1, 2029-2047.

Nugroho, D. G., Nugroho, D. G., Chrisnanto, Y. H., & Wahana, A. (2016). ANALISIS SENTIMEN PADA JASA OJEK ONLINE MENGGUNAKAN METODE NAÏVE BAYES. Prosiding Seminar Sains Nasional Dan Teknologi, Vol 1, No 1, 157-161. doi:10.36499/psnst.v1i1.1526

Nurhafida, S. I. (2021). Analisis Text Clustering Masyarakat Di Twiter Mengenai Mcdonald’Sxbts Menggunakan Orange Data Mining. Prosiding Seminar Nasional Sistem Informasi dan Manajemen Informatika Universitas Nusa Putra, Vol. 1, No. 01, 2. Retrieved from https://sismatik.nusaputra.ac.id/index.php/sismatik/article/view/4

Oktarini, R. (2020). Pengaruh Kualitas Pelayanan Dan Harga Terhadap Kepuasan Pelanggan Pengguna Jasa Aplikasi Gojek Di Kota Tangerang. J. Sekr. Univ. Pamulang, vol. 6, no. 2, 248. doi:10.32493/skr.v6i2.5541.

Pratmanto, D., Rousyati, Wati, F. F., Widodo , A. E., Suleman, & Wijianro, R. (2020). App Review Sentiment Analysis Shopee Application in Google Play Store Using Naive Bayes Algorithm. J. Phys. Conf. Ser, Vol. 1641, No. 1, 1–7. doi:10.1088/1742-6596/1641/1/012043

Rifai, A. I. (2021). Analisis Text Clustering Masyarakat Di Twitter Mengenai Omnibus Law Menggunakan Orange Data Mining. Journal of Information Systems and Informatics, Vol. 3, No. 1, 1-12. doi:10.33557/journalisi.v3i1.78

Sihombing. (2021). Klasifikasi Data Antroprometri Individu Menggunakan Algoritma Naïve Bayes Classifier. Jurnal Teknologi Informasi dan Rekayasa Komputer, Vol. 2, No. 1, 1-10. doi:doi:10.37148/bios.v2i1.15

Sudipa, I. G., Asana, I. M., Atmaja, K. j., Santika, P. P., & Setiawan, D. (2023). Analisis Data Kepuasan Pengguna Layanan E-Wallet Gopay Menggunakan Metode Naïve Bayes Classifier Algorithm. Kesatria: Jurnal Penerapan Sistem Informasi (Komputer dan Manajemen), Vol. 4, No. 3, 726-735. doi:10.30645/kesatria.v4i3.219

Tanggeraini , A. I., & Sitokdana, M. N. (2022). Analisis Sentimen Aplikasi E-Government pada Google Play Menggunakan Algoritma Naïve Bayes. JATISI (Jurnal Teknik Informatika dan Sistem Informasi), Vol. 9, No. 2, 785-795. doi:10.35957/jatisi.v9i2.1835

Zahra, T. L. (2022). Visualisasi Business Model Canvas pada Perusahaan Gojek. osf.io.

Downloads

Published

2023-12-12

How to Cite

Ipan Hasmadi, Rudiman Rudiman, Khoirul Huda Dwi Putra, & Muhammad Farhat jundullah. (2023). Analisis Sentimen Terhadap Kualitas Layanan Driver Gojek Di Aplikasi Play Store Menggunakan Algoritma Naïve Bayes Dan Aplikasi Orange. SABER : Jurnal Teknik Informatika, Sains Dan Ilmu Komunikasi, 2(1), 138–151. https://doi.org/10.59841/saber.v2i1.673