Pemanfaatan Limbah Kotoran Sapi sebagai Energi Biogas Terbarukan: Program Pemberdayaan bagi Warga Binaan di Lembaga Pemasyarakatan Kelas I Malang
DOI:
https://doi.org/10.59841/jurai.v3i2.3222Keywords:
Alternative energy, Biogas, Cow dungAbstract
The correctional facility SAE L’SIMA in Malang is confronted with two major challenges: the environmental impact of accumulated cow manure and the need to provide meaningful vocational training for inmates to support rehabilitation and reintegration. This community service program was designed to address both issues simultaneously through the introduction and application of biogas technology. The primary objective was to manage livestock waste as an alternative renewable energy source while equipping inmates with practical technical skills applicable beyond the correctional setting. The implementation method employed a participatory approach that involved several stages, including program socialization, site survey, biogas unit design, assembly of a small-scale digester, and subsequent monitoring and evaluation.The results demonstrated that the biogas unit was successfully constructed and operational; however, gas production levels remained below optimal standards. Key challenges identified included unstable temperature conditions, which negatively affected the fermentation process, and technical problems such as leakage in the piping system. These obstacles limited the overall effectiveness of gas generation. Despite these limitations, the project provided significant outcomes. First, it created a working model of sustainable energy generation within the correctional environment. Second, it delivered valuable vocational training for inmates, offering them both theoretical knowledge and hands-on experience in renewable energy technology. Furthermore, the program encouraged inmate participation, fostering teamwork, responsibility, and problem-solving skills that are essential for personal development.In conclusion, although technical barriers remain, this initiative succeeded in establishing the foundation for sustainable waste management and renewable energy application within a correctional facility. More importantly, it highlights the potential of biogas technology not only as an environmental solution but also as a rehabilitative vocational training tool. Continued monitoring, process optimization, and technical refinements are essential for achieving long-term success and scalability of this model in similar institutional contexts.
References
Amrin, M. Z. Z., Rosalina, R., & Supriadi, E. (2025). Pengaruh sistem sirkulasi terhadap produksi biogas dari kotoran sapi dan limbah cair tahu. Student Research Journal, 3(1), 161–175. https://doi.org/10.55606/srj-yappi.v3i1.1712
Budiyono, Widiasa, I. N., Johari, S., & Sunarso. (2010). The kinetic of biogas production rate from cattle manure in batch mode. International Journal of Chemical and Biological Engineering, 3(1), 39–44. https://doi.org/10.5281/zenodo.1088345
Chynoweth, D. P., Owens, J. M., & Legrand, R. (2001). Renewable methane from anaerobic digestion of biomass. Renewable Energy, 22(1–3), 1–8. https://doi.org/10.1016/S0960-1481(00)00019-7
Gerardi, M. H. (2003). The microbiology of anaerobic digesters. Wiley. https://doi.org/10.1002/0471468967
Kemausuor, F., Adaramola, M. S., & Morken, J. (2018). A review of commercial biogas systems and lessons for Africa. Energies, 11(11), 2984. https://doi.org/10.3390/en11112984
Kotsopoulos, T. A., Martzopoulos, G. G., & Gkotsis, E. A. (2008). The impact of different temperature levels on the anaerobic digestion of pig manure. Renewable Energy, 33(1), 116–122. https://doi.org/10.1016/j.renene.2007.02.027
Matheri, A. N., Belaid, M., & Seodigeng, T. (2017). Influence of substrate-to-inoculum ratio on biogas yield using pig manure and grass clippings. Renewable and Sustainable Energy Reviews, 72, 1207–1212. https://doi.org/10.1016/j.rser.2016.10.017
Nopharatana, A., Pullammanappallil, P. C., & Clarke, W. P. (2007). Kinetics and dynamic modelling of batch anaerobic digestion of municipal solid waste in a stirred reactor. Waste Management, 27(5), 595–603. https://doi.org/10.1016/j.wasman.2006.03.001
Parawira, W. (2009). Biogas technology in sub-Saharan Africa: Status, prospects and constraints. Reviews in Environmental Science and Bio/Technology, 8, 187–200. https://doi.org/10.1007/s11157-009-9148-0
Risnoyatiningsih, S., Sutaryo, S., & Budiyono, B. (2021). Pengaruh rasio C/N terhadap produksi biogas dari campuran limbah sayuran dan kotoran sapi. Jurnal Teknologi Pertanian, 22(1), 41–48. https://doi.org/10.21776/ub.jtp.2021.022.01.6
Sitorus, T., Harahap, A. R., & Ginting, M. (2018). Pemanfaatan limbah kotoran sapi sebagai energi alternatif biogas di Desa Suka Maju. Jurnal Teknologi Lingkungan Lahan Basah, 6(1), 13–20. https://doi.org/10.26418/jtllb.v6i1.27015
Suada, I. K., & Tenaya, I. W. M. (2023). Analisis limbah sapi yang berpotensi mencemari lingkungan dan menularkan penyakit pada masyarakat. Buletin Veteriner Udayana, 1012. https://doi.org/10.24843/bulvet.2023.v15.i05.p38
Suriawiria, U. (2005). Mikrobiologi air limbah. Penerbit Alumni.
Tangko, J., Sonong, S., S, M. A. C., & Salam, J. (2019). Analisis faktor-faktor yang mempengaruhi produksi biogas dari limbah ternak di Kec. Baroko Kab. Enrekang. Jurnal Teknik Mesin Sinergi, 16(1), 63–69. https://doi.org/10.31963/sinergi.v16i1.1203
Ward, A. J., Hobbs, P. J., Holliman, P. J., & Jones, D. L. (2008). Optimisation of the anaerobic digestion of agricultural resources. Bioresource Technology, 99(17), 7928–7940. https://doi.org/10.1016/j.biortech.2008.02.044
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 jurnal ABDIMAS Indonesia

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.





