Optimasi Segmentasi Citra Daun Kelor dengan Metode Thresholding dalam Identifikasi Penyakit
DOI:
https://doi.org/10.59841/saber.v2i3.1403Keywords:
Image Segmentation, Moringa Plant Diseases, Filter, Thresholding, MATLABAbstract
Diseases in moringa leaves pose a serious threat to PT. Marada Kelor Sumba, a moringa processing company located in Kelurahan Temu, Kanatang District, East Sumba Regency. The main products from moringa processing are moringa powder and moringa tea bags, which are highly beneficial as supplementary food for infants and pregnant women. The company collaborates with the East Sumba Government for the prevention and handling of stunting. The primary objective of this study is to optimize image segmentation methods to identify diseases in moringa leaves with significant implications using MATLAB software. The image segmentation method using Thresholding is applied to separate diseased moringa leaves from healthy ones. Additionally, filters are applied to enhance disease image segmentation capabilities and manipulate images. This research focuses on the image segmentation stage using MATLAB. The benefits of this research are crucial in agriculture and technology development, including early segmentation of diseases in moringa leaves, improvement of disease image segmentation process efficiency, contribution to image-based agricultural technology, and enrichment of scientific knowledge and understanding of disease image segmentation in moringa plants. The segmentation accuracy obtained from testing all samples is 66,67%.
References
Pura, M. L. (2018). Penerapan Radial Basis Function (Rbf) Untuk Menentukan Tingkat Kematangan Buah Tomat Menggunakan Model Warna Hsv. 95.
Hakim, L., Kristanto, S. P., Shodiq, M. N., Yusuf, D., Setiawan, W. A., Informatika, T., Banyuwangi, N., Raya, J., & Km, J. (2020). Segmentasi Citra Penyakit Pada Batang Buah Naga Menggunakan Metode Ruang Warna L*a*B*. Seminar Nasional Terapan Riset Inovatif (SENTRINOV) Ke-6 ISAS Publishing Series: Engineering and Science, 6(1), 728–736.
Heryanto, I. W. A., Artama, Kurniawan, M. W. S., & Gunadi, G. A. (2020). Segmentasi Warna dengan Metode Thresholding. Wahana Matematika Dan Sains, 14(1), 54–64.
Manek, P. G., Baso, B., Fallo, K., Risald, R., & Ullu, H. H. (2023). Segmentasi Daun Cendana Berbasis Citra Menggunakan Otsu Thresholding. Journal of Information and Technology, 3(1), 6–10.
Ndamung, E. P., Pekuwali, A. A., & Abineno, R. T. (2023). Optimasi Segmentasi Citra Daun Padi Dengan Metode Thresholding Dalam Identifikasi Penyakit ( Optimization of Rice Leaf Image Segmentation with Thresholding Method in Disease Identification ). 2(3), 197–209.
Pratama, E. F. A., Khairil, K., & Jumadi, J. (2022). Implementasi Metode K-Means Clustering Pada Segmentasi Citra Digital. Jurnal Media Infotama, 18(2), 291–301.
Ra, D. M., Setiawan, I., Dewanta, W., Nugroho, H. A., & Supriyono, H. (2019). Pengolah Citra Dengan Metode Thresholding. 15(2).
Restuning Pamuji, M. A., & Putra Pamungkas, D. (2023). Segmentasi Citra Daun Bawang Merah Menggunakan Metode Thresholding Otsu. Nusantara of Engineering (NOE), 6(2), 169–174.
Sinaga, A. S. R. M. (2021). Analisis Dan Perbandingan Metode Sobel Edge Detection Dan Prewit Pada Deteksi Tepi Citra Daun Srilangka. CSRID (Computer Science Research and Its Development Journal), 13(1), 12.
Trisnawati, Y. (2021). Berjuta Manfaat Kelor. Pusat Perpustakaan Dan Penyebaran Teknologi Pertanian, Vol 14,(1), 63–75.
Ulla Delfana Rosiani, Cahya Rahmad, Marcelina Alifia Rahmawati, & Frangky Tupamahu. (2020). Segmentasi Berbasis K-Means Pada Deteksi Citra Penyakit Daun Tanaman Jagung. Jurnal Informatika Polinema, 6(3), 37–42.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 SABER : Jurnal Teknik Informatika, Sains dan Ilmu Komunikasi
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.